
 http://sss.sagepub.com/
 

Social Studies of Science

 http://sss.sagepub.com/content/37/2/254
The online version of this article can be found at:

 
DOI: 10.1177/0306312706066022

 2007 37: 254Social Studies of Science
Neil Pollock, Robin Williams and Luciana D'Adderio

of Organizational Software Packages
Global Software and its Provenance : Generification Work in the Production

 
 

Published by:

 http://www.sagepublications.com

 can be found at:Social Studies of ScienceAdditional services and information for 
 
 
 
 

 
 http://sss.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://sss.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://sss.sagepub.com/content/37/2/254.refs.htmlCitations: 
 

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/
http://sss.sagepub.com/content/37/2/254
http://www.sagepublications.com
http://sss.sagepub.com/cgi/alerts
http://sss.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sss.sagepub.com/content/37/2/254.refs.html
http://sss.sagepub.com/


ABSTRACT This paper addresses the seemingly implausible project of establishing a
‘generic’ organizational information system. This is an apparent contradiction: on the
one hand, we are told of the diversity of specific organizational contexts and on the
other, we often find the same standardized software solutions being applied across
those settings. How do generic software packages work in so many different
contexts? Science and Technology Studies provides contrasting accounts of how this
contradiction is resolved: either stressing the unwanted organizational change that
standardized systems may bring; or, alternatively, insisting these technologies can only
be made to work through processes of ‘localization’. We argue that the focus on
specificity versus localization of application contexts draws attention away from
enquiring into the origins and characteristics of generic solutions. Through comparing
the design and evolution of two software packages we shift the debate from
understanding how technologies are made to work within particular settings to how
they are built to work across a diverse range of organizational contexts. Our question
is ‘How do software packages achieve the mobility that allows them to bridge the
heterogeneity within organizations and between organizations in different sectors
and cultures?’ We describe a set of revealed strategies through which suppliers
produce software that embodies characteristics common across many users; what we
term generification work. One aspect of this process of generification is the
configuring of users within ‘managed communities’, but it also includes ‘smoothing’
the contents of the package and, at times, reverting to ‘social authority’. Our
argument is that generic systems do exist but that they are brought into being
through an intricately managed process, involving the broader extension of a
particularized software application and, at the same time, the management of the
user community attached to that solution.

Keywords generification, localization, particularity, sameness, software packages

Global Software and its Provenance:

Generification Work in the Production of
Organizational Software Packages

Neil Pollock, Robin Williams and Luciana D’Adderio

Complex organizational information systems do not travel. Berg (1997)
suggests that the difficulties in transporting such systems from one place to
another arise because they become fixed in ‘time’ and ‘space’. His argu-
ment is that software becomes so thoroughly imbued with the local idio-
syncrasies of its place(s) of production that it only works at the site(s) for
which it was designed and built. Scholars in Science and Technology

Social Studies of Science 37/2 (April 2007) 254–280
© SSS and SAGE Publications (Los Angeles, London, New Delhi and Singapore)
ISSN 0306-3127 DOI: 10.1177/0306312706066022
www.sagepublications.com

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


Studies (STS) and other fields have spent much time describing how building
anything other than the simplest artefact produces this kind of particular-
ization. There are dozens of such examples in STS of how manufacturing
planning systems, finance sector administrative systems, hospital informa-
tion systems, and, to use Berg’s example, expert systems resist transfer to
other settings.1

Yet there is a curious contradiction. Despite familiar-sounding stories
of failed or problematic technology transfer, there are, of course, many
types of software that do appear to be highly mobile. For instance,
Enterprise Resource Planning (ERP) systems, the name given to one of the
most popular types of integrated organizational information system, are
used in diverse places and appear oblivious to the form, function, culture
or even geography of organizations.2 Such has been their ability to tran-
scend their place of production that they are now described as ‘generic‘ or
even ‘global‘ solutions.

How are we to understand travelling software through the lens of STS?
Some have sought to question their existence, disputing whether there is
such a thing as a generic system. According to this argument, a truly global
system is a modernist dream: there are no ‘genuine universals’ in large-
scale information technologies (Star & Ruhleder, 1996: 112); and their cre-
ation is akin to ‘hunting for treasure at the end of a rainbow’ (Hanseth &
Braa, 2001: 261). An alternative STS approach has been to highlight the
effort of local actors in making these systems work in specific local settings
(McLaughlin et al., 1999). From this perspective, we might focus on the
all too apparent gulf between the software presumptions and actual work-
ing practices at the settings where the solution is adopted (as well as the
active processes whereby humans repair these deficiencies). Despite these
objections from within STS, the notion of a generic technology continues
to be a powerful and attractive idea. There are many software suppliers, for
instance, who act as if it were possible to build such an object. It is not our
intention to refute the rhetorics of technology suppliers who claim to cre-
ate universal solutions to organizational activities; instead, we intend to
take seriously their ambitions and strategies to create such solutions.
Rather than focus on the effort of ‘localization’, and thus highlight the
already well researched ‘collision’ of system and setting, we seek to exam-
ine the much less investigated and poorly understood process through
which systems are designed to work across many contexts. Indeed, we
think it odd that STS has little to say about generic software, given that, as
we discuss below, from its earliest days it has concerned itself with how
knowledge is made to transcend its place of production.

Why might this be so? Perhaps this relates to a more fundamental
problem where contemporary social scientific analyses are not good at
thinking about movement (Cooper, 1998). STS is interested in how tech-
nologies are translated for new contexts: and, of course, a kind of move-
ment is examined in these studies, but the primary interest is in the process
of translation as a matter of localization: of how software is both made to
work within a specific setting and how it transforms that setting. There are

Pollock: Global Software and its Provenance 255

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


limitations with movement as ‘simple location’ applied to generic software,
to use Alfred North Whitehead’s term (Whitehead, 1967; cited in Cooper,
1998: 108). For instance, there is little concern for any transformations in
the thing that is moved, such as with the ways in which the software pack-
age is explicitly designed (and redesigned) to work across settings. We find
it odd that there is such a wide-ranging set of terms in STS to describe the
way standardized technologies are ‘imported’ (‘domesticated’, ‘appropri-
ated’ or ‘worked-around’) into user settings, while there is a comparative
lack of emphasis on the reverse process through which an artefact is
‘exported’ from the setting(s) in which it was produced. This is striking
since the bulk of organizational software in use today is produced in this
way – the same systems are recycled from one context to another. By
attempting to develop the beginnings of a vocabulary to capture this
exporting, we describe the practice of making software generic (generifica-
tion work), including its various explicit and revealed generification strate-
gies, as the process of generification.3 Through discussing a number of
generification strategies we hope to offer novel or fresh insight into the
design and use of software packages.

The design of generic packages differs from earlier software develop-
ment traditions. Suppliers traditionally developed close ties with cus-
tomers, the conventional wisdom being that increased knowledge of users
would lead to better design. In contrast, generic solution suppliers are said
to actively keep users at a distance, fearing that their software will become
identified with and tied to specific user organizations and thus not widely
marketable (Bansler & Havn, 1996; Williams et al., 2005). Consequently,
in the information systems literature, software package construction is
conceived of as design for markets (Salzman & Rosenthal, 1994; Sawyer,
2000, 2001). Accordingly, it is said that programmers work without con-
crete notions of users in mind, a process Suchman (1994) describes as
being akin to ‘design from nowhere’.4 However, we are sceptical that
complex organizational systems can be designed for abstract markets in an
asocial manner. To explore this, we present material on the design and
evolution of two software packages, and describe how suppliers actively
manage users through configuring them within ‘communities’. In these
groups suppliers control which functionality and whose particularity will
be accommodated through various forms of generification work. Before
turning to the empirical material, we review how the literature on infor-
mation systems has dealt with generic systems, and then we turn to rele-
vant work within STS.

Narrative Biases in STS: Localization

The nature of software development has changed in the last 30 years
(Friedman & Cornford, 1989). Whereas user organizations once built or
commissioned their own software, they now prefer to buy ‘commodified
solutions’. Initially these were ‘low level’ software systems (such as operat-
ing systems, utilities and application tools), but increasingly they are also

256 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


the ‘higher level’ organizational information systems (such as payroll, pro-
curement and human resources) and industry-specific systems such as
those we are discussing (Brady et al., 1992; Quintas, 1994; Pollock et al.,
2003). From the point of view of scholars sensitive to organizational diver-
sity, this move is highly implausible, since software packages such as ERP
encompass a wide range of organizational activities which, because of their
intricacy, are likely to vary from one organization to another (Fincham et al.,
1994: 283). In contrast, and buoyed up by the seeming success of these
systems, proponents argue that they can be adapted to work in most organ-
izations within the same class and, in principle, across different classes of
organizations. In explicating these arguments, scholars point to the simi-
larities that exist between organizations, as well as to the ‘flexibility’ of
generic systems that allows them to be custom-fitted to even the most idio-
syncratic of settings (Davenport, 2000). As a rejoinder to these ‘universal-
istic’ presumptions, a large body of fine-grained empirical research has
pointed to the difficulties adopters have with implementing them, as well
as the large levels of unwanted organizational change they require – stan-
dardized systems may thus bring risks and unanticipated costs. The aim of
much of this research has been to demonstrate that getting these systems
to work is an ‘accomplishment’; an active process whereby users reconcile
the gulf between system and actual work practices (McLaughlin et al.,
1999).5 If they can transfer between settings it is only as a result of this
major localized effort; they work because they have been re-designed
around the cultures and practices of user organizations.6

In our view, the STS literature tends to over-emphasize the collision
between specific organizational practices and generic system presumptions
at the point of implementation within specific user organizations (see, for
example, Walsham, 2001; Avgerou, 2002). This, we would argue, reflects
the various narrative biases within current STS and sociology: that contexts
of use are always individually different, unique and typified by highly idio-
syncratic practices; whereas technologies are ‘singular’ and ‘monolithic’;
and localization is the means by which the standard and the unique are
somehow brought together.7 A further concern is that localization studies
do not adequately address the longer-term co-evolution of artefacts and
their social settings of use. This is not to say that we should view generic
solutions as embodying features that can and should be applied in all con-
texts. We must also resist universalistic accounts and develop a language
and set of concepts to describe how generic solutions are designed to pass
over organizational, sectoral and national boundaries while embracing
aspects of the specific features within these settings. In this regard, we
argue that the notion of localization, together with the concept of generifi-
cation, can be taken further to explain this circulation. Our argument is not
that the organizations in which the software circulates are the same; rather,
it is that, through various generification strategies, these local sites can be
treated as the same. How, then, are we to account for those times when the
generic systems do actually travel across many contexts (Rolland &
Monteiro, 2002)?

Pollock: Global Software and its Provenance 257

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


From Importing to Exporting

Ophir & Shapin (1991) asked a similar question some years ago in relation
to scientific knowledge. This was a reaction to the ‘localist turn’ in the
Sociology of Scientific Knowledge (SSK): scholars, sceptical of the claim
that knowledge diffuses because it is ‘true’, sought to show how the uni-
versality of science was both an ‘acquired quality’ and ‘local affair’. They
did this by emphasizing how facts were produced with reference to specific
places and times, that they were the product of particular communities and
that there were tacit practices involved in their production (Knorr Cetina,
1981; Turnbull, 2000; Hanseth & Braa, 2001). Ophir & Shapin’s (1991:
15) question was ‘If knowledge is such a “local product”, then how does it
manage to travel with such “unique efficiency”?’ Others voiced similar
questions at the time and this led to a growth in ‘laboratory ethnographies’
and an interest in demonstrating just how knowledge escaped its locality: this
was the claim that knowledge only became universal after contextual fea-
tures of locality or ‘particularity’ were deleted. Moreover, to ‘solve’ this
problem of how knowledge moved from one laboratory to another, Latour
(1987, 1999) introduced various terms such as ‘immutable mobile’ and,
more recently, ‘circulating reference’.

While these terms have become commonplace within the STS vocab-
ulary, they also have been criticized. First, much of the criticism objects to
the overly imperialistic language used by Latour and other proponents of
actor-network theory: ‘immutability’ seems to suggest that devices remain
standardized at the centres at which they are produced, the locales at which
they are used, and as they pass through the channels between these places.
In particular, the notion of immutable mobile directs attention away from
the localized work of adapting an inscription or innovation to a local con-
text of use and setting up the conditions for its effective ‘travel’ (Knorr
Cetina & Amann, 1990).8 Second, the terms are also criticized for imply-
ing that marks of locality are simply deleted. On the first point, and writ-
ing some years earlier, Ravetz (1972) had attempted to give a more
sensitive treatment of the spread of knowledge by arguing, not for the
immutability of scientific knowledge, but for its ‘malleability’. Knowledge,
tools and instruments, he argued, were widely adopted through processes
of ‘smoothing’. That is, scientists importing methods or techniques from
outside their normal domain would ignore any obscurities or unresolved
conceptual difficulties surrounding that object.9 In terms of the second
point, Turnbull sought to build on Latour’s work by showing how the
local, rather than simply being erased, was often ‘aggregated’. He illustrates
this through a discussion of the way in which indigenous knowledges
spread through a process of bridging:

I argue that the common element in all knowledge systems is their local-
ness, and their differences lie in the way that local knowledge is assembled
through social strategies and technical devices for establishing equiva-
lences and connections between otherwise heterogeneous and incompati-
ble components. (Turnbull, 2000: 13)

258 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


In other words, local knowledge diffuses through the creation of ‘similari-
ties’ and ‘equivalences’ between diverse sites. Such equivalence-making
requires a number of different devices and strategies, such as ‘standardiza-
tion’ and ‘collective working’, some of which we will explore further with
empirical material.10

The Studies

We analyse two software packages which are at different stages in their
‘biography’ and characterized by different levels of product maturity and
standardization.11 The first is a student administration system – the
Campus Management module (CM) – developed by the German software
house, SAP, to integrate with its already highly successful ERP R/3 system.
To develop CM, the Supplier had involved a number of universities as the
‘surrogates’ on which the software would be modelled before it would
finally be launched to the wider market as a ‘global university solution’.
While SAP was new to the higher education sector, it had developed soft-
ware for unfamiliar settings many times before. The second study is of the
student accommodation system PAMS, which was built by a company we
call ‘Educational Systems’. PAMS was initially designed around the needs
of one Scottish University but is now being used by more than 40 other
institutions in the UK, and the Supplier is currently investigating the
potential market overseas. PAMS has associated with it a growing and
active ‘user group’ that meets regularly to learn about new product devel-
opments and petition for the building of further functionality. Whereas
SAP already had in place established design methods and processes for
software package design, Educational Systems did not; the latter company
was new to both higher education and to the development of software
packages.12

Birth of a Package

The ‘birth’ stages of the biography of a software package are the most dra-
matic. In this phase there are few users in place and the large community
upon which the package will depend for its circulation is yet to be enrolled.
Seemingly, there are many choices influencing the extent to which the pack-
age will become ‘generic’ and therefore attractive to the widest possible
groups of users. Suppliers will spend time deciding which organizational
practices will be catered for and which will not. In truth, however, and
despite the seeming importance of this stage, the suppliers appeared initially
to follow a strategy of simply and rapidly ‘accumulating functionality’.

Accumulative Functionality13

Software packages are designed around a basic organizational functionality,
what is sometimes described as the ‘generic kernel’. The idea is to paint the
organizational reality of adopters onto this kernel by developing numerous

Pollock: Global Software and its Provenance 259

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


‘templates’, which users can then choose between and tailor to meet their
local conditions. These templates form the ‘outer layer’ of the package, and
are built up over time through interactions with past customers. Suppliers
only reap benefits from developing new templates when they are able to use
them again and again (thus recouping development costs). In the birth
stages, both suppliers found that, rather than simply re-using templates,
they were repeatedly forced to modify or build new ones. For instance,
Educational Systems found that with each new customer for PAMS, the
templates required modification. The Sales Director describes this in rela-
tion to the ‘Payment Schedule’ process:

When we first wrote PAMS for [Scotia University] they produced a
Payment Schedule that gave the student the choice of paying in 3 equal
installments (1 per term) or equal monthly installments. The logic was
therefore simple in that PAMS added up all of the charges and divided by
the number of installments.

However, when they made the next sale to ‘Highbrow’ university there
were some differences which required changes to the software:

The next customer, [Highbrow], also offered the choice of paying in
termly installments, but they massaged the amounts to take 40% in term
1, 40% in term 2, and 20% in term 3, as they wanted to get as much paid
as possible before the student ran out of money. We therefore added a tick
box on the payment plan to say ‘use ratios’, and this then gave access to
an extra column that allows them to enter the % against each installment.

He describes how they could accommodate the next user with the changes
conducted for Highbrow: ‘The next customer [Seaside] also produced a
termly plan, but used the number of days in each term to compute the
amount. Fortunately, the work we had done for [Highbrow] was capable of
managing this, as the days in each term could be entered as numbers as
well as percentages.’ But, once again, when another user adopted the pack-
age they were forced to make changes: ‘[Central] came along. And they
offered students a discount if they paid by a certain date, so we had to add
another (optional) column that stored the settlement date for each instal-
ment and we added the code to compute the value of this discount.’ The
Sales Director goes on to describe the modifications required by two fur-
ther universities: ‘[City], on the other hand, charges a penalty for late pay-
ments. So we added a process that calculated a charge for late payment’;
and on the other hand, ‘[Rural] wanted this banded as their fees change
according to the amount owed, so we added extra functions to band the
charge according to the value.’

What is clear is that as each new site adopts the package, new and dif-
ferent requirements need to be catered for. Importantly, this occurs not sim-
ply in the Payment Schedule process but in all the other templates stored in
the system library. The Supplier appeared to be building into the system
whatever functionality was asked for. However, it was becoming obvious to

260 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


Educational Systems that accumulating and not re-using functionality was
particularizing PAMS. In the case of the Payment Schedule, for instance,
every time a change was made to the template this would be accompanied
by a modification to the graphical user interface. A user was then forced to
view a screen that included buttons and menus specifically intended for
other institutions. As a result, there was now a need for increased training
where users were told which options and buttons related to them and which
did not. However, this mode of redressing the particularization of PAMS
became problematic once the system was made available for operation by
students over the Internet. One of the managers describes the problem:

… how do you get rid of the things that a particular site doesn’t want? For
example, in our payment process we handle things like ‘settlement dis-
count’. Somewhere like [Welsh University] do not use settlement discount
but they just ignore the fields on the screen. If you put that on the Web, all
you do is end up with calls from customers, from students asking ‘Why
haven’t I got any settlement discount?’ When actually the answer is that ‘We
do not use it, so we do not want to display it’. So how do we get over that?

During the birth stage, then, suppliers are presented with choices. If they
continue with the strategy of accumulative functionality, PAMS will
become increasingly baroque, locked in to the particular requirements of
their specific array of existing users. This realization led to a switch in strat-
egy. As the Managing Director of Educational Systems puts it: ‘We are not
going to accommodate as much diversity as we have in the past because it
constrains our ability to grow and resell’. Any changes we make to the
package from now on, he says, will have to have wider applicability: ‘When
we built change into the software we have always tried to build it in a way
that isn’t customer specific and we try to always broaden it a bit so that we
have functionality that has a potentially wider audience’. During one par-
ticular conversation he described how they now try to ‘discourage too
much diversity’. Yet this presents the Supplier with an interesting problem:
how do they continue to make the software attractive to, and, indeed,
encourage, a wider range of new users without having to include every
demand for new functionality? Importantly, how do they ‘discourage too
much diversity’ without discouraging the users attached to this diversity?

Management by Community

If the software is truly designed to travel, then it seems that the suppliers
must avoid dealing with individual users. Indeed, the translation from a par-
ticular to a generic technology corresponds to a shift from a few isolated users
to a larger extended ‘community’ (Cambrosio & Keating, 1995; de Laet &
Mol, 2000). Moreover, it is through establishing and engaging with the users
primarily through such a forum that suppliers are able to shape these com-
munities and to extend the process of generification. In other words, through
participating in community environments, such as the user-group meetings

Pollock: Global Software and its Provenance 261

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


and requirement prototyping sessions, individual organizations were often
dislodged from attachments to particular needs.14

Community Management Strategies

The suppliers had close ties with individual user organizations in the ear-
lier phases, but they felt forced to shift to an alternative form of relation-
ship as the technology matured and the user base grew. The openness of
the software that was stressed during initial interactions was reversed:
where they had previously negotiated on a one-to-one basis with users, they
now appeared increasingly reluctant to differentiate users. Individual con-
versations about design issues were shifted to a more public forum. This
shifting out is also demonstrated in the case of SAP, which had elaborate
routines for managing its communities (and though the same strategies
were visible within Educational Systems, they appeared much less devel-
oped). SAP had developed CM by gathering requirements during site vis-
its and from other direct correspondence with users. The problem in
accumulating functionality in this way was that they were ‘flooded with
particular requests’.15 How might they construct something more generic
from these requests? Moreover, if they were to ‘discourage diversity’, how
would users react if they felt their needs were not being met (and perhaps
those of a neighbour were)? Thus, there was potential for this problem to
become a focus of conflict (and the precious pilot sites on which the future
of the product depended might be discouraged or, worse, lost).

Witnessing

During the requirements prototyping sessions, a wide number of potential
users were invited to the SAP University in Waldorf, Germany. The
reported functions of these meetings, which would last as long as 2 weeks,
were to receive feedback on beta versions of the software and to continue
the requirements gathering process. It was the latter process that was the
most striking. Participants from more than a dozen universities and as
many countries were seated in a room. Each appeared determined to spell
out in magnificent detail just how their particular requirements differed
from the prototype on the screen in front of them, or, just as likely, from
the view being articulated by their neighbour at the next desk. In the
excerpt below, they discuss the storing of student transcripts and whether
universities need to store details on both passed and failed courses. A con-
sultant standing at the front attempts to make sense of the comments by
scribbling them onto overhead projector (OHP) slides:

SAP Consultant: Does everyone want the ability to store two records?

America South Uni: We would maintain only one record …

SAP Consultant: Is there a need to go back into history? If transcript
received and courses are missing do you need to store this?

America North Uni: … no record is needed.

262 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


America South Uni: We need both to update current record and then keep
a history of that …

Belgium Uni: In our case, things are completely different …

This exchange points to the diversity of institutions present and the extent
to which their requirements are similar or, at times, contradictory: where
some users require one kind of record to be stored, others need a more
comprehensive record, and one institution records things in a different
manner altogether! Yet it is here that the Supplier was finally able to
observe the similarities and differences between institutions (and to begin
to shape them in some way).

These meetings were also interesting for the way in which they appeared
to shape the users’ attitudes toward the overall generification process and
their determination to have particular needs represented in the system.
Through spending time getting to know the size and complexity of the task
at hand, the participants appeared far more accommodating towards collec-
tive requirements, even to the extent that they would often compare institu-
tional practices (‘Oh! You do that … ’). They had to concede that, even
though it was a generic system, the Supplier was determined to search for
each and every difference between sites. No differences were ignored. No one
group, or so it seemed, was explicitly favoured. Towards the end of one par-
ticularly long session some of the users even began to suggest that the SAP
was perhaps ‘over determined’ to find and articulate differences. The
America South Uni participant, for instance, described to the others sitting
at his table during a coffee break how he thought SAP had ‘too much
patience’ in allowing everyone present to spell out their particularities in such
detail.16 This comment was insightful in that it suggested an interesting shift
in the provenance of the generification process and in who takes responsibil-
ity for it. Problems were seen to be the result of users, who were intent on
describing their particular needs, while the Supplier, who had actually gath-
ered them together in this way, was guilty only of being ‘too patient’.

In summary, by shifting design from the level of the individual to that
of the community, the Supplier moved the software package from the pri-
vate domain of each user site, where only particular needs could be articu-
lated, to a public setting, where community or generic requirements could
be forged. A further advantage of allowing users to participate collectively
was that they were able to ‘witness’ the continued openness of the process.
Indeed, somewhat ironically, some participants expressed concerns that it
was not the supplier who was prolonging or complicating the generification
process but the users who were doing it to themselves.

Management by Content

Whilst management by community revealed diversity, there was also a need
to shape and smooth this diversity; to manage through content (Knorr
Cetina, 1999).17 There were two aspects to these strategies: first, to trans-
late collective requirements into functionality that might be used by all of

Pollock: Global Software and its Provenance 263

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


the sites present; and, second, because these sites were surrogates for
potentially all other universities, to then translate the community function-
ality into a much more generic functionality. One method of establishing
such templates was through searching for similarities between sites. These
similarities did not emerge easily, but had to be pursued and actively con-
structed. Consequently, we think it is useful to describe this process in
more detail, and so we focus on a discussion of ‘progression’ within the
CM module.

Process Alignment

One Consultant asks participants to describe their rules for progressing stu-
dents from one year to another, and to explain how a student’s grades con-
tribute to her overall Programme of Study. A complicated conversation
develops with various people interjecting. The Consultant struggles to
bring the discussion back on topic by attempting to summarize and name
the particular process being described:

SAP Consultant: We’ve got one aspect now. Just want to get some com-
mon things. How [do] we name the baby? Let’s go to the grading issue.
Want to specify if module will contribute to Programme of Study in any
way as a credit or grade. Is there any rule how it contributes? Is it linked
to students? What is it linked to that it gives credit?

Swiss Uni: Could be a rule or a decision given by someone?

South African Uni: The student can still do the exam and be graded but
it might be true that the grade or credit did or did not influence the stu-
dent’s progression …

Canadian Uni: We wouldn’t use these rules: we take all courses into pro-
gression. We have rules based on courses students take.

SAP Consultant: It is the same at [America North]. It is the US model. It
is the difference between the European and the US model.

There are a number of interesting aspects in this exchange. When faced with
diverging requirements, the establishment of generic features seems impossi-
ble. However, the Consultant does not admit defeat, but accepts the next best
thing to a single generic process: ‘two’ generic templates. Moreover, she con-
structs these two templates by aligning or superimposing processes that are
already roughly similar to one another (‘It is the same at America North’).
This then leads to the establishment of a generic feature (‘It is the US model’),
which means that the requirements of a large group of universities are now
seen to have been captured under one process. We also see in this exchange
the naming of a further generic template, described as the ‘European model’,
which emerges to capture all the differences that do not fit into the ‘US
model’. From now on, there will be two modes of progressing students within
the CM module (meaning that they will adopt either the US or the European
process). Drawing on Epstein (2005) we might describe this as both the pro-
duction of ‘generalized differences’ and a form of ‘process alignment’. Finally,

264 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


once these two categories were established, they were continually compared:
both the supplier and the participants acted as if it was self-evident that every-
thing inside each of these processes was identical, and that anything or any-
one outside of one classification could be easily accommodated in the other.
Indeed, only one of the participants, a South African University, was from an
institution outside the USA or Europe. And since interactions during these
meetings had shown them that they had many similarities with other users,
particularly the British participants, they appeared to be happy to align them-
selves with the European model.18 Process alignment appeared to be a suc-
cessful method, with supplier representatives routinely framing their questions
in ways that promoted this form of generification (‘Does everyone want the
ability to … ?’, ‘Does anybody else have this?’).

Having an Issue Recognized

An interesting, though not altogether surprising, development was that the
users began to learn that if they were to have their particular needs represented
in the system then they too should engage in alignment work. An America
South Uni participant makes a case that the system should record grades for
failed courses, and very quickly other users begin to give their support:

America South Uni: We have concepts called ‘forgiveness’: a student
retakes a course he’s not done well in and he is ‘forgiven’. The old grade
is recorded but not included in the GPA [Grade Point Average].

Canada West Uni: We do the same thing. When we have symbols that
aren’t graded – like ‘withdrawn’ or ‘incomplete’.

SAP Consultant: This is a big issue for everyone … ?

Canada West Uni: We definitely have to store it. These non-grade things
don’t have a pass value or fail value, they are a ‘third’ value.

SAP Consultant: I call it ‘additional module results’.

Here, then, an issue is recognized as generic through this accumulation of
support. Moreover, the Consultant appears happy to include the feature in
the system since she is both able to name it (as ‘additional module results’)
and establish an equivalence among the other institutions whose needs are
catered for under this one concept.

The Organizationally Particular

It was common during these sessions to find requests that could not be made
compatible across sites. Consequently, they had to be rejected or sifted from
the process. The most common method for doing so was simply to categorize
requirements as ‘specific’. For instance, during a discussion around the stor-
ing of surnames, an America East Uni participant describes how they have a
specific need to record maiden names after marriage. They suggest adding a
new field to the screen (an Info_Type) but the Consultant dismisses this as

Pollock: Global Software and its Provenance 265

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


unworkable: ‘If we went for country-specific or customer-specific Info_Types
now, then we could not utilise R/3 resources. The resources would be too
great.’ On this issue, unlike previous ones, the other universities do not align
and thus it is not recorded on the acetate. The official reason for this was that
the change would not link back to the generic system (and this meant that CM
would no longer integrate with the ERP system of which it was a small part).19

The suggestion instead is that America East should create a new Info_Type
themselves when they customize the module back at their own institution. In
other words, making the system fit America East’s needs is postponed and
shifted onto the customization stage at the user site (Hartswood et al., 2002).

Smoothing Strategies

Throughout these requirements-gathering sessions, many of the partici-
pants would go into great detail concerning their specific needs. The con-
sultants would often use an interesting range of social strategies and devices
to simplify and curtail particular requests, and we explore one such strat-
egy with OHP slides (acetates).

Working the Acetate

In response to one lengthy description, the Consultant used the physical
limitations of the acetate to abbreviate a request (‘Just trying to think how
this can fit all on one line’). On other occasions, particular issues would be
rejected for being already covered under existing themes. Pointing to the
acetate, the Consultants would say ‘we had that issue already’, even when
it was not always clear just how the new issue had been covered. Indeed the
acetate was something of an ‘obligatory point of passage’ (a device or gate-
way through which the requirements needed to pass; see Callon, 1986);
once scribbled down, an issue could be considered to have been recognized
by the Supplier, but, of course, it was far from easy to inscribe it on the
acetate. The participants also recognized the importance of the acetates. In
one discussion, the university representatives sites are describing progres-
sion rules and an America South Uni participant prefaces his intervention
by stating that ‘you’ll need a new page’. While, of course, he is attempting
to signal his university’s uniqueness, the Consultant dismisses this by
pointing to the existing, well-annotated acetate and stating how there is
‘one line left’. Later, when the America South participant appears to be
about to list a further set of differences, the Consultant states that ‘the page
is full’. We would say that this working of the acetate was a particularly strong
form of smoothing because it appeared as a simple material necessity and
was thus not recognized as generification work.

From Generification to Generifiers

In the final stages of the CM project there was once again a notable shift
concerning the shaping of the package and the locus of generification.

266 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


Dragging the design from the private domain of direct user engagement to
a public setting had, apparently, been a drain on the Supplier’s resources,
and the requirements prototyping meetings were no longer seen to be as
‘productive’ as they once had been. Below, one participant from a Belgium
University writes in a report that:

The current way of working with workshops is very labour intensive for
the people of product management and development at SAP Waldorf.
The biggest problem is that there is a very mixed public attending these
workshops. Some of them already have a lot of expertise in CM and they
see the workshops as a roll-in of requirements and for giving feedback after
testing. For others this is their first experience with CM and they see it
more as a kind of training. SAP wants to change this. In the future there
will be standard training courses for larger groups. For roll-in activities
there will be focus group meetings. These will only be attended by experts
on the subject (limited groups of people) and they will focus on narrow
subjects.

This shift was met with objections from users who stated a preference for
collective engagement rather than the smaller group or individual interac-
tions. While this appears somewhat counterintuitive, the reason for the
objections became clear some weeks later when one user reported that it was
now increasingly common for their requests for functionality to be rejected.
This was because it was said, by SAP, to be functionality required by only
one university. In other words, because there were no longer community
meetings, it now appeared difficult for the Supplier to work out, and for the
user to determine, what was a generic need and what was not. And it
appeared that they had decided to assume that the majority of the requests
did not represent generic needs. In order to prove their needs were generic
and not particular, the universities had begun to search for similarities
between themselves and the other sites (see Pollock & Cornford, 2004). In
other words, once back in the private domain, the burden of generification
was pushed onto the users. The participants had no choice but to become
‘generifiers’ themselves. If they did not fully participate in the generification
process, if they were not good generifiers, their needs would not be effec-
tively represented within the package. And it appeared to be better to have
your needs represented in a generic format than not at all!

Management by Social Authority

The ability of a software package to become mobile is a result of the suc-
cessful extension of a particularized application, and, at the same time, the
extension of the community attached to that system. It is the latter aspect
which is of interest – specifically how the process requires the enrolment
and configuring of a user community that is subject to, and actively partic-
ipates in, this generification process. However, the kind of work required in
this form of ordering varies from the sophisticated smoothing/sifting strate-
gies and boundary work described above, to what might be described as
more direct ‘social authority’ strategies. This was particularly evident in

Pollock: Global Software and its Provenance 267

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


later phases of the packages’ development when the heterogeneous nature
of the user-base and the fact that it was beginning to swell with ‘late com-
ers’ resulted in pressures to pull the packages in different directions.

Segmenting the User-Base

The initial ‘openness’ of the package was a useful strategy for building the
community by enrolling users into the design process. Now, in the later
stages of the package biography, this openness was something of a draw-
back. As was evident in the quote from the Belgium University above, users
were still expecting to have their particular requests met, and what was
unsettling some of the established pilots was that the late comers were also
making additional demands that might slow or complicate progress. This
also occurred in the case of PAMS. The Sales Director describes how early
on, when the company did not yet have a finished system, it had had to cre-
ate an expectation among users that their specific needs would be met. It
was now difficult to correct this view:

… but, of course, it raises a level of expectation … you can be a year down-
stream in an implementation with somebody, and suddenly they throw up
this requirement that has never been vocalised before, but because they
bought as an early adopter they perceive that they have that type of rela-
tionship that means that you will do it for them. Even though they may
well be the only people in the UK that actually want it!

Rather than simply refuse to cater for any kind of particular requirement,
however, the Supplier had segmented the community into three distinct
categories: as either ‘strategic’, ‘consultative’ or ‘transactional’ customers.
While these terms were part of the vernacular of the PAMS team, they were
still thought to warrant some explanation by the Managing Director, when
he mentioned them to us:

… it is where we perceive it is worth putting the effort: Strategic Customers,
Consultative Customers and Transactional Customers. Transactional
customers don’t want to spend money. They want everything for nothing.
So for every day you put into them you get nothing back. So you put your
days into Consultative customers who want to work with and spend with
you. Whereas Strategic are all about people who help share the vision of
where the product is going to go over the coming years.

From his point of view, Strategic and Consultative customers were central
to the future development of PAMS, whereas Transactional customers
were peripheral to its evolution. The former were regularly quizzed and
consulted on the addition of new features and the general direction of the
package while the latter were actively kept at a distance. One example of
how this strategy structured the users’ interactions with the package was
seen in the issue of ‘customization’ and the question as to whether a user
could modify the generic kernel.20 During a conversation we had with a
PAMS programmer, for instance, he praises a modification carried out by

268 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


one early adopter and describes how this has even been fed back into the
generic package for use at other sites: ‘[The London Uni] have done a fair
bit … 80% of that has been incorporated into the standard package …
They were willing to run ahead … they had the resources’. During the same
conversation, he criticizes another user for making a modification to the
kernel and describes how it was explicitly stated that they are not allowed
to make changes to the source code: ‘We make sure that it’s in the contract
that they don’t do things like that. We have had customers manipulating
the data … from the back-end … Very dangerous … They promised not to
do it again.’ This suggested that the ability of a user to customize PAMs,
and still have their system supported by the Supplier, was directly related
to the status they held at that time. This, of course, begs the question as to
just how a user might find themselves placed in one or another category.

Good Generifiers

Typically the status of a user was simply related to ‘when’ they adopted the
system: the first group of users being closer to, and later-comers further
from, the Supplier. One other key criterion was related to how willing a
user was to reshape practices to conform to the templates embodied within
the system. The Managing Director of Educational Systems describes how:

One of the other things we found about Consultative customers where they
have entered into a dialogue with us is about how they might change how
they do things. There is a lot of functionality in PAMS and there are areas
where the universities aren’t particularly efficient … So the Consultative
customers are more willing to look at how they do their business and how
they might improve their business based on suggestions for us based on
existing functionality or commissioning us to add extra functionality.

Encouraging users to carry out organizational change to align with the sys-
tem is an important strategy for managing the user base, and also a way to
reduce the need for the further accumulation of particular functionality. It
is a method, in other words, of moving users towards the ‘organizationally
generic’. Moreover, suppliers actively recruit customers who appear willing
to engage in such change, and they reward them with greater access to the
shaping process.21

In summary, Educational Systems does not have the large user base
enjoyed by suppliers such as SAP, and thus it has to be sophisticated in how
it brings pressure to bear on users. We saw a form of selection where the
Supplier was prioritizing which functionality might be allowed into the
package. Users were divided into those who sought to align with the orga-
nizationally generic features being developed, often through conducting
processes of change within their own organizations, and those who did not.
The former group, as a reward for being ‘good’ surrogates, were actively
involved in shaping the evolution of the package and were regularly con-
sulted on which features they would like to see in the package. The latter,
by contrast, were pushed to the margins of this shaping process, where they

Pollock: Global Software and its Provenance 269

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


were not consulted or involved in design or evolution. Just what they could
do with the system was policed (see Fig. 1).22

Promising Future?

We now delineate a final stage of the software packages biography: the
future. The software packages might be thought to have a promising future
or ‘career’ ahead of them; promising because the effort to create a generic
technology required moving towards maturity in order to escape particu-
larization. As a result there are still many places to which the software can
travel. In its promotional literature, for instance, SAP boldly states how
the CM module embodies ‘no country specifics’. Yet, despite what this
says, there were times when specific requirements appeared valuable for
the circulation of the software package. Or, perhaps, it was simply impos-
sible to avoid including the particular within the generic technologies
being built.

Surrogate for Whom?

Some users were able to convince the Suppliers that their needs had
‘generic potential’. One criterion determining the ability of a user to get
features embodied in the system revolved around the issue of just ‘who’
they were a surrogate for. The UK market was seen as a ‘strong subsidiary’

270 Social Studies of Science 37/2

Supplier

Strategic users

Deliver software

Transactional
users

Consultative users

Test ideas

Influence

design

Promote

best practice

Commission software

FIGURE 1
Proximity of users to artefact

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


by SAP, meaning that the inclusion of a British university in the commu-
nity might open up potential markets elsewhere. And as a result, the British
university was able to wield significant influence. For instance, the Supplier
agreed to build the ‘UCAS admissions link’, a piece of functionality that
would be a significant drain on resource and, importantly, one that could
not be applied in other countries. During our research we began to learn
that the CM module embodied many other particular features. One docu-
ment describes how: ‘In addition to generic functions, Campus Management
also offers country-specific functions. These are functions that are only
used in a particular country and cover needs arising from local legislation
or business practices.’ In other words, including particular functionality
allowed the CM module to move within the same sector but also to differ-
ent countries.

The case of Educational Systems raised a different issue, as the addi-
tion of particular functionality offered PAMS the potential to move both
into a new country and across an industrial sector. The Supplier was con-
sidering whether to launch PAMS in the USA and, of course, one issue of
import was how well PAMS would fit with the peculiarities found there.
One area where a difference was perceived was in how student rooms were
allocated. Whereas UK students are simply assigned individual rooms, US
students typically share a room and can therefore state their preferred type
of room mate. The Managing Director described how this difference would
require that ‘social engineering’ software be added to PAMS. Initially scep-
tical about the costs of such a development, he also saw how this might be
useful for the evolution of PAMS:

That is a piece of functionality that we could add-in and usefully use over
here. So it may well be something we can use. One of the things we can
certainly use is the ability to have multiple layouts in a room … So we can
build those changes into the software in a way that actually positively
impacts on our ability to sell the software in the UK.

The addition of this ‘social engineering’ functionality would mean that
PAMS would have more utility in existing UK universities and the private
sector hotel industry, one area the Supplier had recently targeted. Their
aim, in other words, was to identify where particular characteristics could
have a more general appeal. We might describe particular features that aid
the circulation of the package (‘the UCAS admission link’, the ‘Social
Engineering’, etc.) as ‘generic examples of the particular’.

Paths of Diversity

There were other forms of diversity included in the system. Earlier we dis-
cussed the template for the ‘progression’ of students and how the
Consultant had developed not one but ‘two’ templates. This was interest-
ing as it was one of the rare occasions when the Supplier had to create
‘multiple’ templates for the same process – what we might describe as poly-
generic templates. In its promotional literature, the Supplier describes these

Pollock: Global Software and its Provenance 271

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


poly-generic templates as giving the system extra flexibility through allow-
ing adopter more choice:

Progression – Depending on your particular environment, you may want
to measure the progress of your students in different ways. One option is
to determine the academic standing … Another option is to evaluate a stu-
dent’s progress … SAP Campus Management supports several progres-
sion methods thanks to our global approach to solution design. The
flexibility of this application allows an institution to change processes in
the future without the need to install a new student information system.

By allowing poly-generic templates the supplier has created the basis for
internally segmenting the user community, so that the templates allow
users to follow different routes depending on their particular circum-
stances. They have, in other words, established ‘paths of diversity’ through
which users might navigate. This was still a form of generification as the
Supplier was allowing users to choose between one of several large group-
ings. In this final section we consider what the inclusion of diversity and
generality means for shaping the generic system and the community of
users.

Opening the Black-Box (and Finding a ‘Black-Blob’)

We have shown how the generic system results from various kinds of
boundary work. With the drawing and redrawing of borders the system
embodies a range of features and potentially caters to a wide range of
organizations (see Fig. 2).

Let us describe the system. The bulk of its features are the organiza-
tionally generic templates that suppliers attempt to build. These form the
majority of the organizational ‘outer layer’, where suppliers hypothesize
that organizations are similar and that the participating sites are good sur-
rogates for all others in that class of organization.23 There are also com-
promises in which designers, unable to devise a single template, build in
several templates to carry out broadly equivalent bundles of organiza-
tional processes. These ‘poly-generic’ features reflect the diversity of user
organization practices and contexts that cannot be readily captured
within a single template. Finally, there are ‘generic particulars’, where
idiosyncratic requirements are deemed to be important for aiding the
future circulation of the package. These are only a few examples of how
the generic and the particular are made to fit together. With further
research, we would be able to generate further instances and a more com-
plex picture. But our point should be clear: when examined closely,
generic solutions are not the monolithic systems that much of the litera-
ture seems to suppose (see for example Walsham [2001] and Avgerou
[2002] as examples). Rather, they are the result of intricate boundary-
work involving generification (the creation of generic templates), the par-
ticularization of the generic (the poly-generic templates) and, at times,

272 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


the generification of the particular (the generic particular templates). In
our view, the design and evolution of software packages are characterized
by the working out of the relationship between the generic and the par-
ticular.24 Indeed, this occurs not simply in design but throughout the life-
time of the software package.

During the research we thus began to recharacterize these generic
solution as ‘black-blobs’ (Michael, 2000). Within STS technologies are
commonly described as ‘black-boxes’ in order to emphasize how their
form and function are stable, that prior processes of shaping are
obscured, and that the user is configured into using the object in certain
ways. By contrast, the software packages are also bounded objects, but
their internal workings continually contort as they move around, and as
new functionality is added. While the overall appearance of the software
package (and in the case of the highly modularized packages such as SAP,
as its core ‘kernel’) may seem to remain intact, the addition of a new tem-
plate, for example, causes the packages to morph and extend themselves
in different directions. It is through this morphing/extension process that
software packages are able to move from place to place, and to reach out
into new settings. Such amoeboid movements, in turn, enable users to
grab onto and then align themselves with the various protuberances and
protrusions.

Pollock: Global Software and its Provenance 273

Generic
particular

Generic
particular

Generic
particularGeneric

Poly-generic

Generic

Generic

Generic

Generic

Generic

Generic

Poly-generic

Particular
Software package

User

alignment Sifting

Pro
m

isi
ng

fu
tu

reProcess
alignment

Particular

FIGURE 2
Generic solution as a ‘black-blob’

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


Conclusion: Black-Blobs Travel Better Than Black-Boxes

Certain software packages can be made to travel with ‘unique efficiency’,
to borrow Shapin’s (1998) description of scientific knowledge. In doing so,
they unsettle prevailing core assumptions in the sociological understanding
of organizational technologies. Put simply, much of the sociological and
STS literature pays particular attention to the mismatch between system
and actual work practices and emphasizes the local adaptation necessary to
bridge the gulf (McLaughlin et al., 1999; Walsham, 2001; Avgerou, 2002).
While we do not downgrade the importance of this focus on how tech-
nologies are imported, we point instead to the need to go beyond studies
of ‘simple location’ and also examine how systems are able to work across
different organizational contexts and how they are exported. Rather than
focus on the collision between unique organizational practices and the
generic solution we should also address how technologies are made (and
continuously remade) to bridge these different locales, as part of our
enquiry into the broader and longer-term co-evolution of artefacts and
their social settings of use. We have argued that generic solutions do exist
and that they do travel to many different places; though, of course, they
don’t go everywhere. They arise through the broader extension of a partic-
ularized software application and, at the same time, the management of the
user community attached to that solution.

We noted some interrelated moments in the biography of these solu-
tions. There was a distinct birth stage at which suppliers designed specific
user requirements into the software. This was followed by a number of
delimited responses in the subsequent maturation of the package, when
the suppliers attempted to move away from the simple accumulation of
particular functionality. One interesting aspect was the shift to capture
collective rather than individual requirements, in order to establish orga-
nizationally generic features through alignment and smoothing practices.
Such practices helped establish greater compatibility across sites, as
equivalencies were established in organizational practices, and differences
were worked together and generalized. Suppliers attempted to align
processes that were already roughly similar, what we called ‘process align-
ment work’. The collective gathering of requirements also had a second-
ary consequence of shifting expectations about the kinds of need that
would be met by the system. Through ‘witnessing’ the level of user diver-
sity, and realizing that the only way to represent needs was to engage in
the process, the users’ conceptions of their own needs shifted in a way
that aligned with those of other participants. In other words, users were
in some respects self-governing concerning the articulation of their level
of particularity and generality. This raises questions about which users
have the capacity to extend and broaden a template: on what grounds
and by which methods?

To summarize, it is not just sociologists of science and technology who
are interested in the relations between the particular and the generic, and
how the boundary between them is established, managed and shifted

274 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


(O’Connell, 1993). Software packages are a high-value industrial product,
necessitating extensive interactions between suppliers and users. Building
software packages calls for suppliers to develop and sustain sophisticated
strategies for managing diversity, and setting boundaries and priorities for
dealing with their market of user organizations. User organizations simi-
larly need to learn how to respond to and interact with such strategies. As
communities grow and inevitably encompass a wider range of organiza-
tional types and requirements, this user-base also needs to be organized if
the supplier is to avoid being confronted with a potentially overwhelming
array of requirements. This, as we have shown, involves different kinds of
boundary work – in terms of understandings of which types of organiza-
tions lay ‘close to’ and which ‘further from’ the supplier’s conception of the
ideal type of user, and in terms of the willingness of the supplier to accept
or sift particular requests from users. The ‘black-box’ view of the generic
solution where it simply ‘invades’ and ‘disciplines’ is too crude. What we
have shown is that establishing a generic solution is a precarious achieve-
ment of various kinds of generification strategies. These are strategies in
which the suppliers and users of software packages constantly work towards
a pragmatic resolution of the tension between the generic and particular.
As a result of this generification work, software packages can circulate and
user communities can grow; that is to say, diverse organizations and stan-
dard technologies can be brought together.

Notes
We acknowledge the support of the UK’s Economic & Social Research Council (ESRC)
who funded the research project (‘The Biography and Evolution of Standardised Software’)
on which this paper was based. We warmly thank all those people at the software supplier
organizations and the user communities who contributed to the paper in various ways. We
acknowledge the contribution of Tasos Karadedos, who accompanied us during interviews
at ‘Educational Systems’. His assistance and final dissertation were very helpful in preparing
this paper. Thanks also to Jamie Fleck, Alex Voss, Christian Koch, Geoffrey Bowker,
Barbera Czarniawska, Dave Stearns, Sampsa Hyysalo, Mei Wang, Christine Grimm, Wendy
Faulkner, the four anonymous referees and the ‘Writing Circle’ at Edinburgh University,
who all provided useful comments and suggestions on early drafts. Thanks particularly to
Michael Lynch for forcing us to clarify our thinking.

1. Webster & Williams (1993) report on the difficulties and frequent failures encountered
when Computer Aided Production Management (CAPM) systems, designed for large
hierarchical US manufacturers, were implemented within the more informal, ad hoc
managerial culture and practices of smaller British manufacturers. Fincham et al. (1994)
identify similar problems in the transfer of packaged finance service sector administration
systems from the USA to the UK where a lower and less formal division of labour
prevailed. McLaughlin et al. (1999) discuss the transfer of a hospital management
system from one national context to another and suggest that because the system was
particular to its geographical birthplace it did not easily translate to new contexts.

2. It has been argued that by the late 1990s most large companies had adopted the same
or a similar ERP system (Muscatello et al., 2003). Moreover, these systems are now
jumping the boundary from the private to the public sector and are moving into local
authorities, hospitals and universities, a move portrayed by many as also highly unlikely.

3. While we do not know of any studies of technology that use this terminology
(generification work, the process and attendant strategies of generification), Errington

Pollock: Global Software and its Provenance 275

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


& Gewertz (2001) provide an interesting discussion of generification in terms of the
local culture of indigenous peoples and how it is affected by other, more dominant
forms of knowledge. We work up the notion of generification because we think it
indicates a way of making sense of how software packages are developed and
recycled, and also provides a counter to biases towards localization arguments within
current STS.

4. See also Hales (1994) for this view.
5. In their comparative study of IT systems, to give just one compelling example,

McLaughlin et al. (1999) deploy a commonplace vocabulary to highlight how users
actively ‘appropriate’ (MacKay & Gillespie, 1992), ‘domesticate’ (Sorensen, 1996) or
‘work-around’ (Gasser, 1986) the shortcomings of newly arrived technologies.

6. An exemplary instance of this kind of writing is Avgerou’s (2002) recent book.
7. The concept of narrative bias invites us to reflect upon the repertoires of classic stories

that particular schools of analysis often develop with characteristic contexts, problem
diagnosis, dangers and solutions (Williams et al., 2005). See also Woolgar & Cooper
(1999) for a similar discussion of ‘iconic exemplars’ in STS.

8. Thanks to Michael Lynch for framing this point in this way.
9. We are grateful here to Jamie Fleck for bringing this set of arguments to our attention.

10. We should also mention Timmermans & Berg’s (1997) work as they have suggested
that artefacts can be both universal and local at the same time. Putting forward the
notion of the ‘local universal’, they argue that universals do exist but they merge
together with the local. This is an important contribution. However, our interests are
different in some respects. Their account is firmly on the side of work practice and the
appropriation of a medical standard and how despite various ‘local circumventions’ and
‘repairs’ carried out by users of a particular protocol, the notion of ‘one’ standard still
persists. Also, local universal is an analytical notion they invent to separate out the world
of practice from the world of standards, and then to show how these worlds are
reconciled with one another. Our concerns, in contrast, are with design practices and
how actors themselves negotiate and establish the boundaries between what is particular
and generic. And in this regard we view as sociologically interesting the way suppliers
attempt to bring together and manage both of these aspects while building a generic
software package. Gieryn (1999) discusses a similar point in relation to the authority of
science and how lay people understand what counts as good and bad science. It is
important, he says, to focus on how actors perform this boundary-work rather than
privileging the analysts’ view.

11. For a more detailed discussion of the ‘biography’ of a software package see Pollock et
al. (2003).

12. The material presented here stems from observations (by N.P.) of what are sometimes
called ‘requirements prototyping’ sessions (meetings in which suppliers demonstrate
early versions of systems and elicit feedback), and user group meetings at the suppliers’
premises. A number of semi-structured interviews and informal discussions were also
conducted with supplier consultants, programmers and users. Finally, one of the
authors (N.P.) was commissioned to conduct a study on the suitability of launching
PAMS abroad. Along with a co-researcher, Tasos Karadedos, N.P. met regularly with
the management team to discuss strategies and potential markets. Material from this
study is also presented here.

13. This discussion of Accumulative Functionality is partially drawn from Karadedos
(2003).

14. Here we loosely draw on Woolgar’s (1996) notion that a technology ‘performs’ a
community. He uses the term in conjunction with the ‘technology as text’ metaphor to
show how readers arrive at a preferred form of use. He suggests that within the
technology/text certain identities and positions are offered with which the user can
choose to align.

15. This was taken from an email exchange between one of the pilot sites and the supplier.
The author was discussing the danger of design that was focused on individual sites and
not the community.

276 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


16. Indeed the participants were becoming increasingly frustrated by the supplier’s attempts
to understand each and every difference among all the universities present and to
reconcile these with the needs of the others present. For the suppliers, such a process
appeared to be useful, as they saw it as a means by which the module might become
more generic and thus potentially applicable to the widest variety of higher education
institutions.

17. Knorr Cetina develops the notion of ‘management by content’ to describe how people
are managed specially through the content of their work as opposed to management
through organizational structure or hierarchy (1999: 172).

18. We later found out during the final stages of drafting this paper that the South African
University eventually decided not to implement CM. Their reasons, and the continuing
evolution of CM, are the subject of continuing research.

19. There is an interesting issue here of how the universities were squeezed into existing
software models that had nothing to do with higher education. We have explored this
issue in Pollock & Cornford (2004).

20. Usually changes to the source code provide suppliers with something of a dilemma. On
the one hand, modifications developed by users are an important source of innovation
and are often fed back into the generic package for use at other sites. On the other
hand, such evolution can be disruptive and if things go wrong during such
modifications, this often leads to disputes about where responsibility rests for sorting
things out. See Pollock (2005) for a lengthy discussion of this issue in relation to the
authorized and unauthorized customizations and ‘work-arounds’ conducted on
standardized computer systems.

21. Interestingly, we also routinely witnessed how a user might shift from one classification
to another. The very first adopter of PAMS, for instance, was in the process of moving
from the centre to the periphery (and there was even talk that it was now becoming
‘transactional’).

22. This diagram is a development of one found in Karadedos (2003). Permission to
reproduce it has been granted.

23. These are of course equivalences only in the realm of design and whether they emerge in
the realm of practice will depend on other generification strategies.

24. Indeed the globalization theorist Roland Robertson (1992: 102) has gone as far as to
describe ‘contemporary globalisation’ as marked by a similar process or what he
describes as the ‘ … institutionalisation of the two-fold process involving the
universalisation of particularism and the particularisation of universalisation’.

References
Avgerou, Chrisanthi (2002) Information Systems and Diversity (Oxford: Oxford University

Press).
Bansler, Jorgen & Erling Havn (1996) ‘Industrialised Information Systems Development’,

CTI Working Paper No 22. Technical University of Denmark.
Berg, Marc (1997) Rationalizing Medical Work: Decision-Support Techniques and Medical

Practices (Cambridge, MA: MIT Press).
Brady, Tim, Margaret Tierney & Robin Williams (1992) ‘The Commodification of Industry

Applications Software’, Industrial and Corporate Change 1(3): 489–514.
Callon, Michel (1986) ‘The Sociology of an Actor-Network: The Case of the Electric

Vehicle’, in Michel Callon, John Law & Arie Rip (eds), Mapping the Dynamics of
Science and Technology (London: Macmillan): 19–34.

Cambrosio, Alberto & Peter Keating (1995) Exquisite Specificity: The Monoclonal Antibody
Revolution (New York: Oxford University Press).

Cooper, Robert (1998) ‘Assemblage Notes’, in Robert Chia (ed.), Organized Worlds:
Explorations in Technology and Organization with Robert Cooper (London: Routledge):
108–29.

Davenport, Thomas (2000) Mission Critical: Realising the Promise of Enterprise Systems
(Boston, MA: Harvard Business School Press).

Pollock: Global Software and its Provenance 277

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


De Laet, Marianne & Annemarie Mol (2000) ‘The Zimbabwe Bush Pump: Mechanics of a
Fluid Technology’, Social Studies of Science 30(2): 225–63.

Epstein, Steven (2005) ‘Institutionalizing the New Politics of Difference in U.S. Biomedical
Research: Thinking across the Science/State/Society Divides’, in Scott Frickel & Kelly
Moore (eds), The New Political Sociology of Science: Institutions, Networks and Power
(Madison, WI: University of Wisconsin Press).

Errington, Frederick & Deborah Gewertz (2001) ‘On the Generification of Culture:
From Blow Fish to Melanesian’, Journal of the Royal Anthropological Institute 7(3):
509–25.

Fincham, Robin, Jamie Fleck, Rob Procter, Harry Scarbrough, Margaret Tierney & Robin
Williams (1994) Expertise and Innovation (Oxford: Clarendon Press).

Friedman, Andrew & Dominic Cornford (1989) Computer Systems Development: History,
Organization and Implementation (Chichester: John Wiley).

Gasser, Les (1986) ‘The Integration of Computing and Routine Work’, ACM Transactions
on Office Information Systems 4(3): 205–25.

Gieryn, Thomas (1999) Cultural Boundaries of Science: Credibility on the Line (Chicago, IL:
University of Chicago Press).

Hales, Mike (1994) ‘Where Are Designers? Styles of Design Practice, Objects of Design and
Views of Users in CSCW’, in Duska Rosenberg & Chris Hutchinson (eds), Design
Issues in CSCW (London: Springer-Verlag): 151–78.

Hanseth, Ole & Kristine Braa (2001) ‘Hunting for the Treasure at the End of the Rainbow:
Standardising Corporate IT Infrastructure’, Computer Supported Cooperative Work
(CSCW) 10: 261–92.

Hartswood, Mark, Rob Procter, Roger Slack, Alex Voss, Monica Buscher, Mark
Rouncefield & Philippe Rouchy (2002) ‘Towards a Principled Synthesis of
Ethnomethodology and Participatory Design’, Scandinavian Journal of Information
Systems 14 (2): 9–30.

Karadedos, Tasos (2003) The Biography of a Software Package, Unpublished MSc
Dissertation, University of Edinburgh.

Knorr Cetina, Karin (1981) The Manufacture of Knowledge: An Essay on the Constructivist and
Contextual Nature of Science (Oxford: Pergamon Press).

Knorr Cetina, Karin (1999) Epistemic Cultures: How the Sciences Make Knowledge
(Cambridge, MA: Harvard University Press).

Knorr Cetina, Karin & Klaus Amann (1990) ‘Image Dissection in Natural Scientific
Inquiry’, Science, Technology, & Human Values 15(3): 259–83.

Latour, Bruno (1987) Science in Action: How to Follow Scientists and Engineers Through Society
(Cambridge, MA: Harvard University Press).

Latour, Bruno (1999) Pandora’s Hope: Essays on the Reality of Science Studies (Cambridge,
MA: Harvard University Press).

MacKay, Hugh & Gareth Gillespie (1992) ‘Extending the Social Shaping of Technology
Approach: Ideology and Appropriation’, Social Studies of Science 22: 685–716.

McLaughlin, Janice, Paul Rosen, David Skinner & Andrew Webster (1999) Valuing
Technology: Organizations, Culture and Change (London: Routledge).

Michael, Mike (2000) Reconnecting Culture, Technology and Nature (London: Routledge).
Muscatello, Joseph, Michael Small & Injazz Chen (2003) ‘Implementing Enterprise

Resource Planning (ERP) Systems in Small and Midsize Manufacturing Firms’,
International Journal of Operations and Production Management 23(7/8): 850–66.

O’Connell, Joseph (1993) ‘Metrology: The Creation of Universality by the Circulation of
Particulars’, Social Studies of Science 23: 129–73.

Ophir, Adi & Steven Shapin (1991) ‘The Place of Knowledge: A Methodological Survey’,
Science in Context 4: 3–21.

Pollock, Neil (2005) ‘When is a Work-around? Conflict and Struggle in Computer Systems
Development’, Science, Technology, & Human Values 30(4): 496–514.

Pollock, Neil & James Cornford (2004) ‘ERP Systems and the University as a “Unique
Organization”’, Information Technology and People 17(1): 31–52.

278 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


Pollock, Neil, Robin Williams & Rob Procter (2003) ‘Fitting Standard Software Packages to
Non-Standard Organizations: The Biography of an Enterprise-wide System’,
Technology Analysis and Strategic Management 15(3): 317–32.

Quintas, Paul (1994) ‘Programmed Innovation? Trajectories of Change in Software
Development’, Information Technology and People 7(1): 25–47.

Ravetz, Jerome (1972) Scientific Knowledge and its Social Problems (Oxford: Oxford
University Press).

Robertson, Roland (1992) Globalisation; Social Theory and Global Culture (London: Sage
Publications).

Rolland, Knut & Eric Monteiro (2002) ‘Balancing the Local and the Global in
Infrastructural Information Systems’, Information Society 18(2): 87–100.

Salzman, Harold & Stephen Rosenthal (1994) Software by Design: Shaping Technology and
the Workplace (Oxford: Oxford University Press).

Sawyer, Steve (2000) ‘Packaged Software: Implications of the Differences from Custom
Approaches to Software Development’, European Journal of Information Systems 9:
47–58.

Sawyer, Steve (2001) ‘A Market-Based Perspective on Information Systems Development’,
Communications of the ACM (November) 44(11): 97–101.

Shapin, Steven (1998) ‘Placing the View From Nowhere: Historical and Sociological
Problems in the Location of Science’, Transactions of the Institute of British Geographers
23(1): 5–12.

Sorensen, Knut (1996) ‘Learning Technology, Constructing Culture: Socio-technical
Change as Social Learning’, STS Working Paper No. 18/96, Centre for Technology &
Society, Trondheim, Norway.

Star, Susan Leigh & Karen Ruhleder (1996) ‘Steps Toward an Ecology of Infrastructure:
Design and Access for Large Information Spaces’, Information Systems Research 7(1):
111–34.

Suchman, Lucy (1994) ‘Working Relations of Technology Production and Use’, Computer
Supported Cooperative Work (CSCW) 2(30): 21–39.

Timmermans, Stefan & Marc Berg (1997) ‘Standardization in Action: Achieving Local
Universality Through Medical Protocols’, Social Studies of Science 27: 273–305.

Turnbull, David (2000) Masons, Tricksters and Cartographers (London: Routledge).
Walsham, Geoff (2001) Making a World of Difference: IT in a Global Context (Chichester:

Wiley).
Webster, Juliet & Robin Williams (1993) ‘Mismatch and Tension: Standard Packages and

Non-standard Users’, in Paul Quintas (ed.), Social Dimensions of Systems Engineering
(Hemel Hempstead: Ellis Horwood): 179–96.

Whitehead, Alfred North (1967) Science and the Modern World (New York: The Free Press).
Williams, Robin, James Stewart & Roger Slack (2005) Experimenting with Information and

Communication Technologies: Social Learning in Technological Innovation (Cheltenham:
Edward Elgar).

Woolgar, Steve (1996) ‘Technologies as Cultural Artefacts’, in William Dutton (ed.),
Information and Communication Technologies: Visions and Realities (Oxford: Oxford
University Press): 87–102.

Woolgar, Steve & Geof Cooper (1999) ‘Do Artefacts Have Ambivalence: Moses’ Bridges,
Winner’s Bridges and Other Urban Legends in STS’, Social Studies of Science 29(3):
433–49.

Neil Pollock lectures in the sociology of information and communication
technologies (ICTs) at the University of Edinburgh and is a member of the
Research Centre for Social Sciences. He has co-authored (with James
Cornford) Putting the University Online: Information, Technology and
Organizational Change (Open University Press, 2003) and is currently writing

Pollock: Global Software and its Provenance 279

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/


a book (with Robin Williams) for Routledge entitled Shaping Software for
Organizations: The Biography and Social Life of a Software Package.

Address: The University of Edinburgh, School of Management, George
Square, Edinburgh, EH8 9JY, Scotland, UK; fax: +44 131 6683053; email:
neil.pollock@ed.ac.uk

Robin Williams is Professor of Social Research on Technology and Director of
the Research Centre for Social Sciences, University of Edinburgh. He has
published widely on the social shaping of ICTs and has written (with James
Stewart and Roger Slack) Experimenting with Information and
Communication Technologies: Social Learning in Technological Innovation
(Edward Elgar, 2005).

Address: ESRC Innogen Centre, The University of Edinburgh, Old
SurgeonsHall, High School Yards, Edinburgh EH1 1LZ, Scotland, UK; fax: +44
131 650 6399; email: r.williams@ed.ac.uk

Luciana D’Adderio is Senior Research Fellow at the Research Centre for
Social Sciences, University of Edinburgh. She has recently published Inside
the Virtual Product: How Organizations Create Knowledge through
Software (Edward Elgar, 2004) and is currently writing a book on the
‘Organization of Testing’.

Address: Research Centre for Social Sciences, The University of Edinburgh,
Old Surgeons Hall, High School Yards, Edinburgh, EH1 1L2, Scotland, UK;
fax: +44 131 650 6399; email: luciana@inf.ed.ac.uk

280 Social Studies of Science 37/2

 at SAGE Publications on October 28, 2010sss.sagepub.comDownloaded from 

http://sss.sagepub.com/

